Time-crystalline eigenstate order on a quantum processor
Author:
Mi XiaoORCID, Ippoliti Matteo, Quintana Chris, Greene Ami, Chen Zijun, Gross Jonathan, Arute Frank, Arya Kunal, Atalaya Juan, Babbush Ryan, Bardin Joseph C.ORCID, Basso JoaoORCID, Bengtsson Andreas, Bilmes Alexander, Bourassa Alexandre, Brill Leon, Broughton Michael, Buckley Bob B., Buell David A., Burkett BrianORCID, Bushnell Nicholas, Chiaro Benjamin, Collins Roberto, Courtney William, Debroy Dripto, Demura SeanORCID, Derk Alan R., Dunsworth Andrew, Eppens DanielORCID, Erickson Catherine, Farhi Edward, Fowler Austin G., Foxen Brooks, Gidney Craig, Giustina Marissa, Harrigan Matthew P.ORCID, Harrington Sean D.ORCID, Hilton Jeremy, Ho Alan, Hong Sabrina, Huang Trent, Huff Ashley, Huggins William J.ORCID, Ioffe L. B., Isakov Sergei V., Iveland Justin, Jeffrey Evan, Jiang Zhang, Jones Cody, Kafri Dvir, Khattar Tanuj, Kim Seon, Kitaev Alexei, Klimov Paul V., Korotkov Alexander N., Kostritsa Fedor, Landhuis DavidORCID, Laptev Pavel, Lee Joonho, Lee Kenny, Locharla Aditya, Lucero Erik, Martin Orion, McClean Jarrod R.ORCID, McCourt Trevor, McEwen MattORCID, Miao Kevin C., Mohseni Masoud, Montazeri ShirinORCID, Mruczkiewicz WojciechORCID, Naaman OferORCID, Neeley MatthewORCID, Neill CharlesORCID, Newman Michael, Niu Murphy Yuezhen, O’Brien Thomas E., Opremcak Alex, Ostby Eric, Pato Balint, Petukhov Andre, Rubin Nicholas C., Sank Daniel, Satzinger Kevin J.ORCID, Shvarts Vladimir, Su Yuan, Strain Doug, Szalay Marco, Trevithick Matthew D., Villalonga Benjamin, White Theodore, Yao Z. Jamie, Yeh PingORCID, Yoo Juhwan, Zalcman AdamORCID, Neven Hartmut, Boixo SergioORCID, Smelyanskiy Vadim, Megrant AnthonyORCID, Kelly JulianORCID, Chen Yu, Sondhi S. L., Moessner Roderich, Kechedzhi Kostyantyn, Khemani VedikaORCID, Roushan Pedram
Abstract
AbstractQuantum many-body systems display rich phase structure in their low-temperature equilibrium states1. However, much of nature is not in thermal equilibrium. Remarkably, it was recently predicted that out-of-equilibrium systems can exhibit novel dynamical phases2–8 that may otherwise be forbidden by equilibrium thermodynamics, a paradigmatic example being the discrete time crystal (DTC)7,9–15. Concretely, dynamical phases can be defined in periodically driven many-body-localized (MBL) systems via the concept of eigenstate order7,16,17. In eigenstate-ordered MBL phases, the entire many-body spectrum exhibits quantum correlations and long-range order, with characteristic signatures in late-time dynamics from all initial states. It is, however, challenging to experimentally distinguish such stable phases from transient phenomena, or from regimes in which the dynamics of a few select states can mask typical behaviour. Here we implement tunable controlled-phase (CPHASE) gates on an array of superconducting qubits to experimentally observe an MBL-DTC and demonstrate its characteristic spatiotemporal response for generic initial states7,9,10. Our work employs a time-reversal protocol to quantify the impact of external decoherence, and leverages quantum typicality to circumvent the exponential cost of densely sampling the eigenspectrum. Furthermore, we locate the phase transition out of the DTC with an experimental finite-size analysis. These results establish a scalable approach to studying non-equilibrium phases of matter on quantum processors.
Funder
United States Department of Defense | Defense Advanced Research Projects Agency Google Alfred P. Sloan Foundation
Publisher
Springer Science and Business Media LLC
Subject
Multidisciplinary
Reference45 articles.
1. Wen, X.-G. Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford Univ. Press, 2007). 2. Bukov, M., D’Alessio, L. & Polkovnikov, A. Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64, 139–226 (2015). 3. Harper, F., Roy, R., Rudner, M. S. & Sondhi, S. Topology and broken symmetry in Floquet systems. Annu. Rev. Condens. Matter Phys. 11, 345–368 (2020). 4. Oka, T. & Aoki, H. Photovoltaic Hall effect in graphene. Phys. Rev. B 79, 081406 (2009). 5. Rudner, M. S., Lindner, N. H., Berg, E. & Levin, M. Anomalous edge states and the bulk-edge correspondence for periodically driven two-dimensional systems. Phys. Rev. X 3, 031005 (2013).
Cited by
157 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|