Large-scale simulations of Floquet physics on near-term quantum computers

Author:

Eckstein TimoORCID,Mansuroglu RefikORCID,Czarnik PiotrORCID,Zhu Jian-XinORCID,Hartmann Michael J.ORCID,Cincio LukaszORCID,Sornborger Andrew T.ORCID,Holmes ZoëORCID

Abstract

AbstractPeriodically driven quantum systems exhibit a diverse set of phenomena but are more challenging to simulate than their equilibrium counterparts. Here, we introduce the Quantum High-Frequency Floquet Simulation (QHiFFS) algorithm as a method to simulate fast-driven quantum systems on quantum hardware. Central to QHiFFS is the concept of a kick operator which transforms the system into a basis where the dynamics is governed by a time-independent effective Hamiltonian. This allows prior methods for time-independent simulation to be lifted to simulate Floquet systems. We use the periodically driven biaxial next-nearest neighbor Ising (BNNNI) model, a natural test bed for quantum frustrated magnetism and criticality, as a case study to illustrate our algorithm. We implemented a 20-qubit simulation of the driven two-dimensional BNNNI model on Quantinuum’s trapped ion quantum computer. Our error analysis shows that QHiFFS exhibits not only a cubic advantage in driving frequency ω but also a linear advantage in simulation time t compared to Trotterization.

Funder

DOE | LDRD | Oak Ridge National Laboratory

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

Friedrich-Alexander-Universität Erlangen-Nürnberg

DOE | LDRD | Los Alamos National Laboratory

Munich Quantum Valley Erlangen National High Performance Computing Center (NHR@FAU) International Max-Planck Research School for Physics of Light

Munich Quantum Valley Erlangen National High Performance Computing Center

Uniwersytet Jagielloński w Krakowie

Narodowe Centrum Nauki

DOE | National Nuclear Security Administration

Sandoz Family Foundation-Monique de Meuron program for Academic Promotion

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3