Environmental drivers of increased ecosystem respiration in a warming tundra
Author:
Maes S. L.ORCID, Dietrich J.ORCID, Midolo G., Schwieger S.ORCID, Kummu M.ORCID, Vandvik V.ORCID, Aerts R., Althuizen I. H. J.ORCID, Biasi C.ORCID, Björk R. G.ORCID, Böhner H., Carbognani M.ORCID, Chiari G.ORCID, Christiansen C. T.ORCID, Clemmensen K. E.ORCID, Cooper E. J.ORCID, Cornelissen J. H. C., Elberling B.ORCID, Faubert P.ORCID, Fetcher N.ORCID, Forte T. G. W.ORCID, Gaudard J.ORCID, Gavazov K.ORCID, Guan Z., Guðmundsson J.ORCID, Gya R.ORCID, Hallin S.ORCID, Hansen B. B., Haugum S. V.ORCID, He J.-S.ORCID, Hicks Pries C.ORCID, Hovenden M. J.ORCID, Jalava M.ORCID, Jónsdóttir I. S.ORCID, Juhanson J., Jung J. Y., Kaarlejärvi E.ORCID, Kwon M. J., Lamprecht R. E., Le Moullec M., Lee H., Marushchak M. E., Michelsen A.ORCID, Munir T. M.ORCID, Myrsky E. M., Nielsen C. S., Nyberg M., Olofsson J.ORCID, Óskarsson H., Parker T. C., Pedersen E. P.ORCID, Petit Bon M.ORCID, Petraglia A.ORCID, Raundrup K., Ravn N. M. R., Rinnan R.ORCID, Rodenhizer H., Ryde I., Schmidt N. M.ORCID, Schuur E. A. G.ORCID, Sjögersten S., Stark S.ORCID, Strack M.ORCID, Tang J.ORCID, Tolvanen A., Töpper J. P., Väisänen M. K., van Logtestijn R. S. P.ORCID, Voigt C.ORCID, Walz J., Weedon J. T.ORCID, Yang Y.ORCID, Ylänne H.ORCID, Björkman M. P.ORCID, Sarneel J. M.ORCID, Dorrepaal E.
Abstract
AbstractArctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.
Publisher
Springer Science and Business Media LLC
Reference89 articles.
1. Schuur, E. A. G. et al. Permafrost and climate change: carbon cycle feedbacks from the warming arctic. Annu. Rev. Environ. Resour. 47, 343–371 (2022). 2. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles https://doi.org/10.1029/2008GB003327 (2009). 3. Virkkala, A.-M. et al. Statistical upscaling of ecosystem CO2 fluxes across the terrestrial tundra and boreal domain: regional patterns and uncertainties. Glob. Change Biol. 27, 4040–4059 (2021). 4. Karhu, K. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–83 (2014). 5. Rustad, L. E. et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543–562 (2001).
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|