High-fidelity spin qubit operation and algorithmic initialization above 1 K

Author:

Huang Jonathan Y.ORCID,Su Rocky Y.,Lim Wee Han,Feng MengKeORCID,van Straaten Barnaby,Severin BrandonORCID,Gilbert WillORCID,Dumoulin Stuyck Nard,Tanttu TuomoORCID,Serrano SantiagoORCID,Cifuentes Jesus D.ORCID,Hansen Ingvild,Seedhouse Amanda E.,Vahapoglu Ensar,Leon Ross C. C.ORCID,Abrosimov Nikolay V.ORCID,Pohl Hans-Joachim,Thewalt Michael L. W.,Hudson Fay E.ORCID,Escott Christopher C.,Ares NataliaORCID,Bartlett Stephen D.ORCID,Morello AndreaORCID,Saraiva AndreORCID,Laucht ArneORCID,Dzurak Andrew S.ORCID,Yang Chih HwanORCID

Abstract

AbstractThe encoding of qubits in semiconductor spin carriers has been recognized as a promising approach to a commercial quantum computer that can be lithographically produced and integrated at scale1–10. However, the operation of the large number of qubits required for advantageous quantum applications11–13 will produce a thermal load exceeding the available cooling power of cryostats at millikelvin temperatures. As the scale-up accelerates, it becomes imperative to establish fault-tolerant operation above 1 K, at which the cooling power is orders of magnitude higher14–18. Here we tune up and operate spin qubits in silicon above 1 K, with fidelities in the range required for fault-tolerant operations at these temperatures19–21. We design an algorithmic initialization protocol to prepare a pure two-qubit state even when the thermal energy is substantially above the qubit energies and incorporate radiofrequency readout to achieve fidelities up to 99.34% for both readout and initialization. We also demonstrate single-qubit Clifford gate fidelities up to 99.85% and a two-qubit gate fidelity of 98.92%. These advances overcome the fundamental limitation that the thermal energy must be well below the qubit energies for the high-fidelity operation to be possible, surmounting a main obstacle in the pathway to scalable and fault-tolerant quantum computation.

Publisher

Springer Science and Business Media LLC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3