Brain texture as a marker of transdiagnostic clinical profiles in patients with recent-onset psychosis and depression

Author:

Korda Alexandra I.ORCID,Andreou ChristinaORCID,Ruef Anne,Hahn Lisa,Schmidt André,Dannlowski Udo,Kambeitz-Ilankovic Lana,Dwyer Dominic B.,Kambeitz Joseph,Wenzel Julian,Ruhrmann StephanORCID,Wood Stephen J.,Salokangas Raimo K. R.,Pantelis ChristosORCID,Schultze-Lutter FraukeORCID,Meisenzahl Eva,Brambilla Paolo,Selvaggi Pierluigi,Bertolino Alessandro,Hietala Jarmo,Upthegrove RachelORCID,Lalousis Paris Alexandros,Riecher-Rössler Anita,Davatzikos Christos,Lencer Rebekka,Koutsouleris NikolaosORCID,Borgwardt StefanORCID,

Abstract

AbstractThe inter-relationships of voxels can be captured by the radiomics texture features across multiple spatial scales. Prediction models of brain texture changes captured by the contrast texture feature in recent-onset psychosis (ROP) and recent-onset depression (ROD) have recently been proposed, although the validation of these models transdiagnostically at the individual level and the investigation of the variability in clinical profiles are lacking. Established prevention and treatment approaches focus on specific diagnoses and do not address the heterogeneity and manifold potential outcomes of patients. Here we aimed to investigate the cross-sectional utility of brain texture changes for (1) identification of the psychopathological state (ROP and ROD) and (2) the association of individualized brain texture maps with clinical symptom severity and outcome profiles. We developed transdiagnostic models based on structural magnetic resonance imaging data for 116 patients with ROD, 122 patients with ROP and 197 healthy control participants from the PRONIA (Personalized pROgNostic tools for early psychosIs mAnagement) study by applying a set of tools and frameworks to explain the classification decisions of the deep-learning algorithm (named explainable artificial intelligence) and clustering analysis. We investigated the contrast texture feature as the key feature for the identification of a general psychopathological state. The discrimination power of the trained prediction model was >72% and was validated in a second independent age- and sex-matched sample of 137 ROP, 94 ROD and 159 healthy control participants. Clustering analysis was implemented to map the changes in texture brain produced from an explainable artificial intelligence algorithm, in a group fashion. The explained individualized brain contrast map grouped into eight homogeneous clusters. In the clinical group, we investigated the association between the explained brain contrast texture map and clinical symptom severity as well as outcome profiles. Different patterns in the explained brain contrast texture map showed unique associations of brain alterations with clinical symptom severity and clinical outcomes, that is, age, positive, negative and depressive symptoms, and functionality. In some clusters, the mean explained brain contrast texture map values and/or brain contrast texture voxels that contributed significantly to the classification decision predicted accurately the PANSS (positive and negative symptom scale) scores, functionality and change in functionality over time. In conclusion, we created homogeneous clusters which predict the clinical severity and outcome profile in ROP and ROD patients.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3