Affiliation:
1. Department of Psychiatry CHA Bundang Medical Center, CHA University School of Medicine Seongnam Republic of Korea
2. Department of Mechanical Engineering Pohang University of Science and Technology Pohang Republic of Korea
3. National Program Excellence in Software at Kwangwoon University Seoul Republic of Korea
4. Department of Radiology and Research Institute of Radiological Science and Center for Clinical Imaging Data Science Yonsei University College of Medicine Seoul Republic of Korea
Abstract
AimsThe cerebellum is involved in higher‐order mental processing as well as sensorimotor functions. Although structural abnormalities in the cerebellum have been demonstrated in schizophrenia, neuroimaging techniques are not yet applicable to identify them given the lack of biomarkers. We aimed to develop a robust diagnostic model for schizophrenia using radiomic features from T1‐weighted magnetic resonance imaging (T1‐MRI) of the cerebellum.MethodsA total of 336 participants (174 schizophrenia; 162 healthy controls [HCs]) were allocated to training (122 schizophrenia; 115 HCs) and test (52 schizophrenia; 47 HCs) cohorts. We obtained 2568 radiomic features from T1‐MRI of the cerebellar subregions. After feature selection, a light gradient boosting machine classifier was trained. The discrimination and calibration of the model were evaluated. SHapley Additive exPlanations (SHAP) was applied to determine model interpretability.ResultsWe identified 17 radiomic features to differentiate participants with schizophrenia from HCs. In the test cohort, the radiomics model had an area under the curve, accuracy, sensitivity, and specificity of 0.89 (95% confidence interval: 0.82–0.95), 78.8%, 88.5%, and 75.4%, respectively. The model explanation by SHAP suggested that the second‐order size zone non‐uniformity feature from the right lobule IX and first‐order energy feature from the right lobules V and VI were highly associated with the risk of schizophrenia.ConclusionThe radiomics model focused on the cerebellum demonstrates robustness in diagnosing schizophrenia. Our results suggest that microcircuit disruption in the posterior cerebellum is a disease‐defining feature of schizophrenia, and radiomics modeling has potential for supporting biomarker‐based decision‐making in clinical practice.
Funder
National Research Foundation of Korea
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献