Development of the Senseiver for efficient field reconstruction from sparse observations

Author:

Santos Javier E.ORCID,Fox Zachary R.,Mohan Arvind,O’Malley DanielORCID,Viswanathan Hari,Lubbers Nicholas

Abstract

AbstractThe reconstruction of complex time-evolving fields from sensor observations is a grand challenge. Frequently, sensors have extremely sparse coverage and low-resource computing capacity for measuring highly nonlinear phenomena. While numerical simulations can model some of these phenomena using partial differential equations, the reconstruction problem is ill-posed. Data-driven-strategies provide crucial disambiguation, but these suffer in cases with small amounts of data, and struggle to handle large domains. Here we present the Senseiver, an attention-based framework that excels in reconstructing complex spatial fields from few observations with low overhead. The Senseiver reconstructs n-dimensional fields by encoding arbitrarily sized sparse sets of inputs into a latent space using cross-attention, producing uniform-sized outputs regardless of the number of observations. This allows efficient inference by decoding only a sparse set of output observations, while a dense set of observations is needed to train. This framework enables training of data with complex boundary conditions and extremely large fine-scale simulations. We build on the Perceiver IO by enabling training models with fewer parameters, which facilitates field deployment, and a training framework that allows a flexible number of sensors as input, which is critical for real-world applications. We show that the Senseiver advances the state-of-the-art of field reconstruction in many applications.

Funder

Los Alamos National Laboratory

DOE | EIA | Office of Energy Analysis

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3