Journey over destination: dynamic sensor placement enhances generalization

Author:

Marcato AgneseORCID,Guiltinan Eric,Viswanathan Hari,O’Malley Daniel,Lubbers Nicholas,Santos Javier EORCID

Abstract

Abstract Reconstructing complex, high-dimensional global fields from limited data points is a challenge across various scientific and industrial domains. This is particularly important for recovering spatio-temporal fields using sensor data from, for example, laboratory-based scientific experiments, weather forecasting, or drone surveys. Given the prohibitive costs of specialized sensors and the inaccessibility of certain regions of the domain, achieving full field coverage is typically not feasible. Therefore, the development of machine learning algorithms trained to reconstruct fields given a limited dataset is of critical importance. In this study, we introduce a general approach that employs moving sensors to enhance data exploitation during the training of an attention based neural network, thereby improving field reconstruction. The training of sensor locations is accomplished using an end-to-end workflow, ensuring differentiability in the interpolation of field values associated to the sensors, and is simple to implement using differentiable programming. Additionally, we have incorporated a correction mechanism to prevent sensors from entering invalid regions within the domain. We evaluated our method using two distinct datasets; the results show that our approach enhances learning, as evidenced by improved test scores.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3