Neural scaling of deep chemical models

Author:

Frey Nathan C.ORCID,Soklaski Ryan,Axelrod Simon,Samsi Siddharth,Gómez-Bombarelli RafaelORCID,Coley Connor W.ORCID,Gadepally Vijay

Abstract

AbstractMassive scale, in terms of both data availability and computation, enables important breakthroughs in key application areas of deep learning such as natural language processing and computer vision. There is emerging evidence that scale may be a key ingredient in scientific deep learning, but the importance of physical priors in scientific domains makes the strategies and benefits of scaling uncertain. Here we investigate neural-scaling behaviour in large chemical models by varying model and dataset sizes over many orders of magnitude, studying models with over one billion parameters, pre-trained on datasets of up to ten million datapoints. We consider large language models for generative chemistry and graph neural networks for machine-learned interatomic potentials. We investigate the interplay between physical priors and scale and discover empirical neural-scaling relations for language models in chemistry with a scaling exponent of 0.17 for the largest dataset size considered, and a scaling exponent of 0.26 for equivariant graph neural network interatomic potentials.

Funder

United States Department of Defense | U.S. Air Force

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software

Reference70 articles.

1. Sejnowski, T. J. The unreasonable effectiveness of deep learning in artificial intelligence. Proc. Natl Acad. Sci. USA 117, 30033–30038 (2020).

2. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: pre-training of deep bidirectional transformers for language understanding. Preprint at https://arxiv.org/abs/1810.04805 (2018).

3. Ramesh, A. et al. Zero-shot text-to-image generation. In Proc. 38th International Conference on Machine Learning Vol. 139, 8821–8831 (PMLR, 2021).

4. Bommasani, R. et al. On the opportunities and risks of foundation models. Preprint at https://arxiv.org/abs/2108.07258 (2021).

5. Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596, 583–589 (2021).

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3