Finding the most potent compounds using active learning on molecular pairs

Author:

Fralish ZacharyORCID,Reker DanielORCID

Abstract

Active learning allows algorithms to steer iterative experimentation to accelerate and de-risk molecular optimizations, but actively trained models might still exhibit poor performance during early project stages where the training data is limited and model exploitation might lead to analog identification with limited scaffold diversity. Here, we present ActiveDelta, an adaptive approach that leverages paired molecular representations to predict improvements from the current best training compound to prioritize further data acquisition. We apply the ActiveDelta concept to both graph-based deep (Chemprop) and tree-based (XGBoost) models during exploitative active learning for 99 Ki benchmarking datasets. We show that both ActiveDelta implementations excel at identifying more potent inhibitors compared to the standard exploitative active learning implementations of Chemprop, XGBoost, and Random Forest. The ActiveDelta approach is also able to identify more chemically diverse inhibitors in terms of their Murcko scaffolds. Finally, deep models such as Chemprop trained on data selected through ActiveDelta approaches can more accurately identify inhibitors in test data created through simulated time-splits. Overall, this study highlights the large potential for molecular pairing approaches to further improve popular active learning strategies in low data regimes by enabling faster and more accurate identification of more diverse molecular hits against critical drug targets.

Funder

NIH NIGMS

Duke Science & Technology Initiative

U.S. Department of Defense

Publisher

Beilstein Institut

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3