Abstract
AbstractSolving long sequential tasks remains a non-trivial challenge in the field of embodied artificial intelligence. Enabling a robotic system to perform diverse sequential tasks with a broad range of manipulation skills is a notable open problem and continues to be an active area of research. In this work, we present a hybrid hierarchical learning framework, the robotic manipulation network ROMAN, to address the challenge of solving multiple complex tasks over long time horizons in robotic manipulation. By integrating behavioural cloning, imitation learning and reinforcement learning, ROMAN achieves task versatility and robust failure recovery. It consists of a central manipulation network that coordinates an ensemble of various neural networks, each specializing in different recombinable subtasks to generate their correct in-sequence actions, to solve complex long-horizon manipulation tasks. Our experiments show that, by orchestrating and activating these specialized manipulation experts, ROMAN generates correct sequential activations accomplishing long sequences of sophisticated manipulation tasks and achieving adaptive behaviours beyond demonstrations, while exhibiting robustness to various sensory noises. These results highlight the significance and versatility of ROMAN’s dynamic adaptability featuring autonomous failure recovery capabilities, and underline its potential for various autonomous manipulation tasks that require adaptive motor skills.
Funder
Supported by the EPSRC CDT in Robotics and Autonomous Systems
Supported by the UKRI CDT in Foundational Artificial Intelligence
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献