Potential long-term habitable conditions on planets with primordial H–He atmospheres

Author:

Mol Lous MaritORCID,Helled RavitORCID,Mordasini Christoph

Abstract

AbstractCold super-Earths that retain their primordial, H–He-dominated atmosphere could have surfaces that are warm enough to host liquid water. This would be due to the collision-induced absorption of infrared light by hydrogen, which increases with pressure. However, the long-term potential for habitability of such planets has not been explored yet. Here we investigate the duration of this potential exotic habitability by simulating planets of different core masses, envelope masses and semi-major axes. We find that terrestrial and super-Earth planets with masses of ~1–10 M can maintain temperate surface conditions up to 5–8 Gyr at radial distances larger than ~2 au. The required envelope masses are ~10−4M (which is 2 orders of magnitude more massive than Earth’s) but can be an order of magnitude smaller (when close-in) or larger (when far out). This result suggests that the concept of planetary habitability should be revisited and made more inclusive with respect to the classical definition.

Funder

National Centre of Competence in Research Robotics

Publisher

Springer Science and Business Media LLC

Subject

Astronomy and Astrophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3