Quasi-periodic sub-pulse structure as a unifying feature for radio-emitting neutron stars

Author:

Kramer MichaelORCID,Liu KuoORCID,Desvignes Gregory,Karuppusamy RameshORCID,Stappers Ben W.

Abstract

AbstractMagnetars are highly magnetized rotating neutron stars that are predominantly observed as high-energy sources. Six of this class of neutron star are known to also emit radio emission, so magnetars are a favoured model for the origin of at least some of the fast radio bursts (FRBs). If magnetars, or neutron stars in general, are indeed responsible, sharp empirical constraints on the mechanism producing radio emission are required. Here we report on the detection of polarized quasi-periodic substructure in the emission of all well-studied radio-detected magnetars. A correlation previously seen, relating substructure in pulsed emission of radio-emitting neutron stars to their rotational period, is extended and now shown to span more than six orders of magnitude in pulse period. This behaviour is not only seen in magnetars but in members of all classes of radio-emitting rotating neutron stars, regardless of their evolutionary history, their power source or their inferred magnetic field strength. If magnetars are responsible for FRBs, it supports the idea of being able to infer underlying periods from sub-burst timescales in FRBs.

Publisher

Springer Science and Business Media LLC

Subject

Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3