Abstract
AbstractObserving magnetic star–planet interactions (SPIs) offers promise for determining the magnetic fields of exoplanets. Models of sub-Alfvénic SPIs predict that terrestrial planets in close-in orbits around M dwarfs can induce detectable stellar radio emission, manifesting as bursts of strongly polarized coherent radiation observable at specific planet orbital positions. Here we present 2–4 GHz detections of coherent radio bursts on the slowly rotating M dwarf YZ Ceti, which hosts a compact system of terrestrial planets, the innermost of which orbits with a two-day period. Two coherent bursts occur at similar orbital phases of YZ Ceti b, suggestive of an enhanced probability of bursts near that orbital phase. We model the system’s magnetospheric environment in the context of sub-Alfvénic SPIs and determine that YZ Ceti b can plausibly power the observed flux densities of the radio detections. However, we cannot rule out stellar magnetic activity without a well-characterized rate of non-planet-induced coherent radio bursts on slow rotators. YZ Ceti is therefore a candidate radio SPI system, with unique promise as a target for long-term monitoring.
Funder
National Science Foundation
Publisher
Springer Science and Business Media LLC
Subject
Astronomy and Astrophysics
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献