SNP rs17079281 decreases lung cancer risk through creating an YY1-binding site to suppress DCBLD1 expression

Author:

Wang Yu,Ma Rongna,Liu Ben,Kong Jinyu,Lin Hongyan,Yu Xiao,Wang Ruoyang,Li Lei,Gao Ming,Zhou Baosen,Mohan Man,Yu HerbertORCID,Hou Zhaoyuan,Shen Hongbin,Qian Biyun

Abstract

AbstractGenome-wide association studies (GWAS) have identified numerous genetic variants that are associated with lung cancer risk, but the biological mechanisms underlying these associations remain largely unknown. Here we investigated the functional relevance of a genetic region in 6q22.2 which was identified to be associated with lung cancer risk in our previous GWAS. We performed linkage disequilibrium (LD) analysis and bioinformatic prediction to screen functional SNPs linked to a tagSNP in 6q22.2 loci, followed by two case-control studies and a meta-analysis with 4403 cases and 5336 controls to identify if these functional SNPs were associated with lung cancer risk. A novel SNP rs17079281 in the DCBLD1 promoter was identified to be associated with lung cancer risk in Chinese populations. Compared with those with C allele, patients with T allele had lower risk of adenocarcinoma (adjusted OR = 0.86; 95% CI: 0.80–0.92), but not squamous cell carcinoma (adjusted OR = 0.99; 95% CI: 0.91–1.10), and patients with the C/T or T/T genotype had lower levels of DCBLD1 expression than those with C/C genotype in lung adenocarcinoma tissues. We performed functional assays to characterize its biological relevance. The results showed that the T allele of rs17079281 had higher binding affinity to transcription factor YY1 than the C allele, which suppressed DCBLD1 expression. DCBLD1 behaved like an oncogene, promoting tumor growth by influencing cell cycle progression. These findings suggest that the functional variant rs17079281C>T decreased lung adenocarcinoma risk by creating an YY1-binding site to suppress DCBLD1 expression, which may serve as a biomarker for assessing lung cancer susceptibility.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3