How artificial intelligence might disrupt diagnostics in hematology in the near future

Author:

Walter Wencke,Haferlach Claudia,Nadarajah Niroshan,Schmidts Ines,Kühn Constanze,Kern Wolfgang,Haferlach TorstenORCID

Abstract

AbstractArtificial intelligence (AI) is about to make itself indispensable in the health care sector. Examples of successful applications or promising approaches range from the application of pattern recognition software to pre-process and analyze digital medical images, to deep learning algorithms for subtype or disease classification, and digital twin technology and in silico clinical trials. Moreover, machine-learning techniques are used to identify patterns and anomalies in electronic health records and to perform ad-hoc evaluations of gathered data from wearable health tracking devices for deep longitudinal phenotyping. In the last years, substantial progress has been made in automated image classification, reaching even superhuman level in some instances. Despite the increasing awareness of the importance of the genetic context, the diagnosis in hematology is still mainly based on the evaluation of the phenotype. Either by the analysis of microscopic images of cells in cytomorphology or by the analysis of cell populations in bidimensional plots obtained by flow cytometry. Here, AI algorithms not only spot details that might escape the human eye, but might also identify entirely new ways of interpreting these images. With the introduction of high-throughput next-generation sequencing in molecular genetics, the amount of available information is increasing exponentially, priming the field for the application of machine learning approaches. The goal of all the approaches is to allow personalized and informed interventions, to enhance treatment success, to improve the timeliness and accuracy of diagnoses, and to minimize technically induced misclassifications. The potential of AI-based applications is virtually endless but where do we stand in hematology and how far can we go?

Publisher

Springer Science and Business Media LLC

Subject

Cancer Research,Genetics,Molecular Biology

Reference78 articles.

1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. editors. WHO classification of tumours of haematopoietic and lymphoid tissues. Revised 4th edn. Lyon: International Agency for Research on Cancer; 2017.

2. Madhavan S, Beckman RA, McCoy MD, Pishvaian MJ, Brody JR, Macklin P. Envisioning the future of precision oncology trials. Nat Cancer. 2021;2:9–11.

3. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, et al. Digital twins to personalize medicine. Genome Med. 2019;12:4.

4. Fjelland R. Why general artificial intelligence will not be realized. Humanit Soc Sci Commun. 2020;7:10.

5. Wu JT, Wong KCL, Gur Y, Ansari N, Karargyris A, Sharma A, et al. Comparison of chest radiograph interpretations by artificial intelligence algorithm vs radiology residents. JAMA Netw Open. 2020;3:e2022779.

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3