Selection, drift and community interactions shape microbial biogeographic patterns in the Pacific Ocean

Author:

Milke Felix,Wagner-Doebler IreneORCID,Wienhausen Gerrit,Simon MeinhardORCID

Abstract

AbstractDespite accumulating data on microbial biogeographic patterns in terrestrial and aquatic environments, we still lack a comprehensive understanding of how these patterns establish, in particular in ocean basins. Here we show the relative significance of the ecological mechanisms selection, dispersal and drift for shaping the composition of microbial communities in the Pacific Ocean over a transect of 12,400 km between subantarctic and subarctic regions. In the epipelagic, homogeneous selection contributes 50–60% and drift least to the three mechanism for the assembly of prokaryotic communities whereas in the upper mesopelagic, drift is relatively most important for the particle-associated subcommunities. Temperature is important for the relative significance of homogeneous selection and dispersal limitation for community assembly. The relative significance of both mechanisms was inverted with increasing temperature difference along the transect. For eukaryotes >8 µm, homogeneous selection is also the most important mechanisms at two epipelagic depths whereas at all other depths drift is predominant. As species interactions are essential for structuring microbial communities we further analyzed co-occurrence-based community metrics to assess biogeographic patterns over the transect. These interaction-adjusted indices explained much better variations in microbial community composition as a function of abiotic and biotic variables than compositional or phylogenetic distance measures like Bray–Curtis or UniFrac. Our analyses are important to better understand assembly processes of microbial communities in the upper layers of the largest ocean and how they adapt to effectively perform in global biogeochemical processes. Similar principles presumably act upon microbial community assembly in other ocean basins.

Funder

Deutsche Forschungsgemeinschaft

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3