Dietary selection of metabolically distinct microorganisms drives hydrogen metabolism in ruminants

Author:

Li Qiu Shuang,Wang Rong,Ma Zhi YuanORCID,Zhang Xiu Min,Jiao Jin Zhen,Zhang Zhi GangORCID,Ungerfeld Emilio M.ORCID,Yi Kang Le,Zhang Bai Zhong,Long Liang,Long Yun,Tao Ye,Huang Tao,Greening ChrisORCID,Tan Zhi Liang,Wang MinORCID

Abstract

AbstractRuminants are important for global food security but emit the greenhouse gas methane. Rumen microorganisms break down complex carbohydrates to produce volatile fatty acids and molecular hydrogen. This hydrogen is mainly converted into methane by archaea, but can also be used by hydrogenotrophic acetogenic and respiratory bacteria to produce useful metabolites. A better mechanistic understanding is needed on how dietary carbohydrates influence hydrogen metabolism and methanogenesis. We profiled the composition, metabolic pathways, and activities of rumen microbiota in 24 beef cattle adapted to either fiber-rich or starch-rich diets. The fiber-rich diet selected for fibrolytic bacteria and methanogens resulting in increased fiber utilization, while the starch-rich diet selected for amylolytic bacteria and lactate utilizers, allowing the maintenance of a healthy rumen and decreasing methane production (p < 0.05). Furthermore, the fiber-rich diet enriched for hydrogenotrophic methanogens and acetogens leading to increased electron-bifurcating [FeFe]-hydrogenases, methanogenic [NiFe]- and [Fe]-hydrogenases and acetyl-CoA synthase, with lower dissolved hydrogen (42%, p < 0.001). In contrast, the starch-rich diet enriched for respiratory hydrogenotrophs with greater hydrogen-producing group B [FeFe]-hydrogenases and respiratory group 1d [NiFe]-hydrogenases. Parallel in vitro experiments showed that the fiber-rich selected microbiome enhanced acetate and butyrate production while decreasing methane production (p < 0.05), suggesting that the enriched hydrogenotrophic acetogens converted some hydrogen that would otherwise be used by methanogenesis. These insights into hydrogen metabolism and methanogenesis improve understanding of energy harvesting strategies, healthy rumen maintenance, and methane mitigation in ruminants.

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3