MicroRNA-mediated regulation of lipid metabolism in virus-infected Emiliania huxleyi

Author:

Zhang Enquan,Gao Jingjing,Wei Zehua,Zeng Jun,Li Jian,Li GuilingORCID,Liu JingwenORCID

Abstract

AbstractThe interactions between Emiliania huxleyi and E. huxleyi virus (EhV) regulate marine carbon and sulfur biogeochemical cycles and play a prominent role in global climate change. As a large DNA virus, EhV has developed a novel “virocell metabolism” model to meet its high metabolic needs. Although it has been widely demonstrated that EhV infection can profoundly rewire lipid metabolism, the epigenetic regulatory mechanisms of lipid metabolism are still obscure. MicroRNAs (miRNAs) can regulate biological pathways by targeting hub genes in the metabolic processes. In this study, the transcriptome, lipidome, and miRNAome were applied to investigate the epigenetic regulation of lipid metabolism in E. huxleyi cells during a detailed time course of viral infection. Combined transcriptomic, lipidomic, and physiological experiments revealed reprogrammed lipid metabolism, along with mitochondrial dysfunction and calcium influx through the cell membrane. A total of 69 host miRNAs (including 1 known miRNA) and 7 viral miRNAs were identified, 27 of which were differentially expressed. Bioinformatic prediction revealed that miRNAs involved in the regulation of lipid metabolism and a dual-luciferase reporter assay suggested that phosphatidylinositol 3-kinase (PI3K) gene might be a target of ehx-miR5. Further qPCR and western blot analysis showed a significant negative correlation between the expression of ehx-miR5 and its target gene PI3K, along with the lower activity of its downstream components (p-Akt, p-TOR, SREBP), indicating that lipid metabolism might be regulated by ehx-miR5 through the PI3K-Akt-TOR signaling pathway. Our findings reveal several novel mechanisms of viral strategies to manipulate host lipid metabolism and provide evidence that ehx-miR5 negatively modulates the expression of PI3K and disturbs lipid metabolism in the interactions between E. huxleyi and EhV.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3