Free Radical-Mediated Damage to Barrier Function is not Associated with Altered Brain Morphology in High-Altitude Headache

Author:

Bailey Damian M1,Roukens Robin2,Knauth Michael3,Kallenberg Kai3,Christ Stefan3,Mohr Alex3,Genius Just4,Storch-Hagenlocher Birgitte4,Meisel Fabien4,McEneny Jane5,Young Ian S5,Steiner Thorsten4,Hess Klaus4,Baärtsch Peter2

Affiliation:

1. Department of Physiology, University of Glamorgan, Pontypridd, UK

2. Division of Sports Medicine, University of Heidelberg, Heidelberg, Germany

3. Department of Neuroradiology, University of Goöttingen, Goöttingen, Germany

4. Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany

5. Centre for Clinical and Population Sciences, Queen's University Belfast, Belfast, UK

Abstract

The present study combined molecular and neuroimaging techniques to examine if free radical-mediated damage to barrier function in hypoxia would result in extracellular edema, raise intracranial pressure (ICP) and account for the neurological symptoms typical of high-altitude headache (HAH) also known as acute mountain sickness (AMS). Twenty-two subjects were randomly exposed for 18 h to 12% (hypoxia) and 21% oxygen (O2 (normoxia)) for collection of venous blood (0 h, 8 h, 15 h, 18 h) and CSF (18 h) after lumbar puncture (LP). Electron paramagnetic resonance (EPR) spectroscopy identified a clear increase in the blood and CSF concentration of O2 and carbon-centered free radicals ( P > 0.05 versus normoxia) subsequently identified as lipid-derived alkoxyl (LO) and alkyl (LC) species. Magnetic resonance imaging (MRI) demonstrated a mild increase in brain volume (7.0 ± 4.8mL or 0.6% ± 0.4%, P > 0.05 versus normoxia) that resolved within 6 h of normoxic recovery. However, there was no detectable evidence for gross barrier dysfunction, elevated lumbar pressures, T2 prolongation or associated neuronal and astroglial damage. Clinical AMS was diagnosed in 50% of subjects during the hypoxic trial and corresponding headache scores were markedly elevated ( P > 0.05 versus non-AMS). A greater increase in brain volume was observed, though this was slight, independent of oxidative stress, barrier dysfunction, raised lumbar pressure, vascular damage and measurable evidence of cerebral edema and only apparent in the most severe of cases. These findings suggest that free-radical-mediated vasogenic edema is not an important pathophysiological event that contributes to the mild brain swelling observed in HAH.

Publisher

SAGE Publications

Subject

Cardiology and Cardiovascular Medicine,Clinical Neurology,Neurology

Cited by 104 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3