Intermittent hypoxic training: implications for lipid peroxidation induced by acute normoxic exercise in active men

Author:

BAILEY Damian M.1,DAVIES Bruce1,YOUNG Ian S.2

Affiliation:

1. Hypoxia Research Unit, Health and Exercise Sciences Research Laboratory, School of Applied Sciences, University of Glamorgan, Pontypridd CF37 1DL, South Wales, U.K.

2. Institute of Clinical Science, Queen's University, Belfast BT12 6BJ, N. Ireland, U.K.

Abstract

Oxidant generation during regular physical exercise training may influence the adaptive responses that have been shown to confer protection against oxidative stress induced by subsequent acute exercise. To examine this, we randomly assigned 32 males to either a normoxic (n = 14) or a hypoxic (n = 18) group. During the acute phase, subjects in the hypoxic group performed two maximal cycling tests in a randomized double-blind fashion: one under conditions of normoxia and the other under hypoxic conditions (inspired fraction of O2 = 0.21 and 0.16 respectively). During the intermittent phase, the normoxic and hypoxic groups each trained for 4 weeks at the same relative exercise intensity, under conditions of normoxia and hypoxia respectively. During acute exercise under hypoxic conditions, the venous concentrations of lipid hydroperoxides and malondialdehyde were increased, despite a comparatively lower maximal oxygen uptake (o2max) (P < 0.05 compared with normoxia). The increases in lipid hydroperoxides and malondialdehyde were correlated with the exercise-induced decrease in arterial haemoglobin oxygen saturation (r =-0.61 and r =-0.50 respectively; P < 0.05), but not with o2max. Intermittent hypoxic training attenuated the increases in lipid hydroperoxides and malondialdehyde induced by acute normoxic exercise more effectively than did normoxic training, due to a selective mobilization of α-tocopherol (P < 0.05). The latter was related to enhanced exercise-induced mobilization/oxidation of blood lipids due to a selective increase in o2max (P < 0.05 compared with normoxic group). We conclude that lipid peroxidation induced by acute exercise (1) increases during hypoxia; (2) is not regulated exclusively by a mass action effect of o2; and (3) is selectively attenuated by regular hypoxic training. Oxidative stress may thus be considered as a biological prerequisite for adaptation to physical stress in humans.

Publisher

Portland Press Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3