Abstract
AbstractWe describe a dataset from patients who received ablative radiation therapy for locally advanced pancreatic cancer (LAPC), consisting of computed tomography (CT) and cone-beam CT (CBCT) images with physician-drawn organ-at-risk (OAR) contours. The image datasets (one CT for treatment planning and two CBCT scans at the time of treatment per patient) were collected from 40 patients. All scans were acquired with the patient in the treatment position and in a deep inspiration breath-hold state. Six radiation oncologists delineated the gastrointestinal OARs consisting of small bowel, stomach and duodenum, such that the same physician delineated all image sets belonging to the same patient. Two trained medical physicists further edited the contours to ensure adherence to delineation guidelines. The image and contour files are available in DICOM format and are publicly available from The Cancer Imaging Archive (https://doi.org/10.7937/TCIA.ESHQ-4D90, Version 2). The dataset can serve as a criterion standard for evaluating the accuracy and reliability of deformable image registration and auto-segmentation algorithms, as well as a training set for deep-learning-based methods.
Funder
U.S. Department of Health & Human Services | NIH | National Cancer Institute
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献