Abstract
AbstractUnderstanding the genomic underpinnings of thermal adaptation is a hot topic in eco-evolutionary studies of parasites. Marine heteroxenous parasites have complex life cycles encompassing a free-living larval stage, an ectothermic intermediate host and a homeothermic definitive host, thus representing compelling systems for the study of thermal adaptation. The Antarctic anisakid Contracaecum osculatum sp. D is a marine parasite able to survive and thrive both at very cold and warm temperatures within the environment and its hosts. Here, a de novo transcriptome of C. osculatum sp. D was generated for the first time, by performing RNA-Seq experiments on a set of individuals exposed to temperatures experienced by the nematode during its life cycle. The analysis generated 425,954,724 reads, which were assembled and then annotated. The high-quality assembly was validated, achieving over 88% mapping against the transcriptome. The transcriptome of this parasite will represent a valuable genomic resource for future studies aimed at disentangling the genomic architecture of thermal tolerance and metabolic pathways related to temperature stress.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献