Abstract
Abstract
While the GRACE (Gravity Recovery and Climate Experiment) satellite mission is of great significance in understanding various branches of Earth sciences, the quality of GRACE monthly products can be unsatisfactory due to strong longitudinal stripe-pattern errors and other flaws. Based on corrected GRACE Mascon (mass concentration) gridded mass transport time series and updated LDCgam (Least Difference Combination global angular momenta) data, we present a new set of monthly gravity models called LDCmgm90, in the form of Stokes coefficients with order and degree both up to 90. The LDCgam inputs are developed by assimilating degree-2 Stokes coefficients from various versions of GRACE (including Mascon products) and SLR (Satellite Laser Ranging) monthly gravity data into combinations of outputs from various global atmospheric, oceanic, and hydrological circulation models, under the constraints of accurately measured Earth orientation parameters in the Least Difference Combination (LDC) scheme. Taking advantages of the relative strengths of the various input solutions, the LDCmgm90 is free of stripes and some other flaws of classical GRACE products.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities of China
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Reference69 articles.
1. Tapley, B. D., Chambers, D. P., Bettadpur, S. & Ries, J. C. Large scale ocean circulation from the GRACE GGM01 Geoid. Geophys. Res. Lett. 30, 2163–2166 (2002).
2. Xing, W. et al. Estimating monthly evapotranspiration by assimilating remotely sensed water storage data into the extended Budyko framework across different climatic regions. J. Hydro. 567, 684–695 (2018).
3. Rahimi, A., Li, J., Naeeni, M. R., Shahrisvand, M. & Fatolazadeh, F. On the extraction of co-seismic signal for the Kuril Island earthquakes using GRACE observations. Geophy. J. Int. 215, 346–362 (2018).
4. Poropat, L. et al. Time variations in ocean bottom pressure from a few hours to many years: in situ data, numerical models, and GRACE satellite gravimetry. J. Geophys. Res. Oceans 123, 5612–5623 (2018).
5. Ran, J. J. et al. Seasonal mass variations show timing and magnitude of meltwater storage in the Greenland Ice Sheet. Cryosphere 12, 2981–2999 (2018).
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献