Abstract
AbstractSurface Soil Moisture (SSM) information is needed for agricultural water resource management, hydrology and climate analysis applications. Temporal and spatial sampling by the space-borne instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. We produced a Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) with 25 km spatial resolution (2011~2018) by applying the Triple Collocation Analysis (TCA) and Linear Weight Fusion (LWF) methods. Using five metrics, the GDSMFD was evaluated against in-situ soil moisture measurements from ten ground observation networks and compared with the prefusion SSM products. Results indicated that the GDSMFD was consistent with in-situ soil moisture measurements, the minimum of root mean square error values of GDSMFD was only 0.036 cm3/cm3. Moreover, the GDSMFD had a good global coverage with mean Global Coverage Fraction (GCF) of 0.672 and the maximum GCF of 0.837. GDSMFD performed well in accuracy and global coverage fraction, making it valuable in applications to the global climate change monitoring, drought monitoring and hydrological monitoring.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献