AmeriFlux BASE data pipeline to support network growth and data sharing

Author:

Chu HousenORCID,Christianson Danielle S.ORCID,Cheah You-Wei,Pastorello GilbertoORCID,O’Brien FiannaORCID,Geden Joshua,Ngo Sy-Toan,Hollowgrass Rachel,Leibowitz Karla,Beekwilder Norman F.,Sandesh Megha,Dengel Sigrid,Chan Stephen W.,Santos André,Delwiche Kyle,Yi KoongORCID,Buechner Christin,Baldocchi Dennis,Papale DarioORCID,Keenan Trevor F.ORCID,Biraud Sébastien C.ORCID,Agarwal Deborah A.ORCID,Torn Margaret S.

Abstract

AbstractAmeriFlux is a network of research sites that measure carbon, water, and energy fluxes between ecosystems and the atmosphere using the eddy covariance technique to study a variety of Earth science questions. AmeriFlux’s diversity of ecosystems, instruments, and data-processing routines create challenges for data standardization, quality assurance, and sharing across the network. To address these challenges, the AmeriFlux Management Project (AMP) designed and implemented the BASE data-processing pipeline. The pipeline begins with data uploaded by the site teams, followed by the AMP team’s quality assurance and quality control (QA/QC), ingestion of site metadata, and publication of the BASE data product. The semi-automated pipeline enables us to keep pace with the rapid growth of the network. As of 2022, the AmeriFlux BASE data product contains 3,130 site years of data from 444 sites, with standardized units and variable names of more than 60 common variables, representing the largest long-term data repository for flux-met data in the world. The standardized, quality-ensured data product facilitates multisite comparisons, model evaluations, and data syntheses.

Funder

DOE | Office of Science

European H2020 ENVRI-FAIR project

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference70 articles.

1. Novick, K. A. et al. The AmeriFlux network: A coalition of the willing. Agric. For. Meteorol. 249, 444–456 (2018).

2. Collier, N. et al. The international land model benchmarking (ILAMB) system: Design, theory, and implementation. J. Adv. Model. Earth Syst. 10, 2731–2754 (2018).

3. Chen, D. et al. Framing, Context, and Methods. in Climate Change 2021: The Physical Science Basis. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (ed. Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou) 147–286 (2021).

4. Heinsch, F. A. et al. Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 44, 1908–1925 (2006).

5. Verma, M. et al. Improving the performance of remote sensing models for capturing intra- and inter-annual variations in daily GPP: An analysis using global FLUXNET tower data. Agric. For. Meteorol. 214–215, 416–429 (2015).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3