Two sub‐annual timescales and coupling modes for terrestrial water and carbon cycles

Author:

Short Gianotti Daniel J.1ORCID,McColl Kaighin A.23ORCID,Feldman Andrew F.45ORCID,Xu Xiangtao6ORCID,Entekhabi Dara1ORCID

Affiliation:

1. Ralph M. Parsons Laboratory for Environmental Science and Engineering Massachusetts Institute of Technology Cambridge Massachusetts USA

2. Department of Earth & Planetary Sciences Harvard University Cambridge Massachusetts USA

3. John A Paulson School of Engineering & Applied Sciences Harvard University Cambridge Massachusetts USA

4. Biospheric Sciences Laboratory, NASA Goddard Space Flight Center Greenbelt Maryland USA

5. Earth System Science Interdisciplinary Center University of Maryland Greenbelt Maryland USA

6. Department of Ecology & Evolutionary Biology Cornell University Ithaca New York USA

Abstract

AbstractTo bridge the knowledge gap between (a) our (instantaneous‐to‐seasonal‐scale) process understanding of plants and water and (b) our projections of long‐term coupled feedbacks between the terrestrial water and carbon cycles, we must uncover what the dominant dynamics are linking fluxes of water and carbon. This study uses the simplest empirical dynamical systems models—two‐dimensional linear models—and observation‐based data from satellites, eddy covariance towers, weather stations, and machine‐learning‐derived products to determine the dominant sub‐annual timescales coupling carbon uptake and (normalized) evaporation fluxes. We find two dominant modes across the Contiguous United States: (1) a negative correlation timescale on the order of a few days during which landscapes dry after precipitation and plants increase their carbon uptake through photosynthetic upregulation. (2) A slow, seasonal‐scale positive covariation through which landscape drying leads to decreased growth and carbon uptake. The slow (positively correlated) process dominates the joint distribution of local water and carbon variables, leading to similar behaviors across space, biomes, and climate regions. We propose that vegetation cover/leaf area variables link this behavior across space, leading to strong emergent spatial patterns of water/carbon coupling in the mean. The spatial pattern of local temporal dynamics—positively sloped tangent lines to a convex long‐term mean‐state curve—is surprisingly strong, and can serve as a benchmark for coupled Earth System Models. We show that many such models do not represent this emergent mean‐state pattern, and hypothesize that this may be due to lack of water‐carbon feedbacks at daily scales.

Funder

Jet Propulsion Laboratory

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3