RADReef: A global Holocene Reef Rate of Accretion Dataset

Author:

Hynes Michael G.ORCID,O’Dea AaronORCID,Webster Jody M.ORCID,Renema Willem

Abstract

AbstractReef cores are a powerful tool for investigating temporal changes in reef communities. Radiometric dating facilitates the determination of vertical accretion rates, which has allowed for examination of local-regional controlling factors, such as subsidence and sea level changes. Coral reefs must grow at sufficient rates to keep up with sea level rise, or risk ‘drowning.’ As sea level is expected to rise significantly in the next 100 years and beyond, it is important to understand whether reefs will be able to survive. Historical records of reef accretion rates extracted from cores provide valuable insights into extrinsic controlling factors of reef growth and are instrumental in helping predict if future reefs can accrete at rates needed to overcome predicted sea level changes. While extensive research exists at local and regional scales, limited attention has been given to identifying global patterns and drivers. To address this, we present “RADReef”: A global dataset of dated Holocene reef cores. RADReef serves as a foundation for further research on past, present and future reef accretion.

Funder

EC | Horizon 2020 Framework Programme

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3