Drivers and predictions of coral reef carbonate budget trajectories

Author:

Januchowski-Hartley Fraser A.12ORCID,Graham Nicholas A. J.34,Wilson Shaun K.56ORCID,Jennings Simon78,Perry Chris T.1

Affiliation:

1. Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK

2. UMR 248 MARBEC/UMR250 ENTROPIE, UM2-CNRS-IRD-IFREMER-UM1, Université Montpellier 2, Montpellier, France

3. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

4. ARC Centre of Excellence for Coral Reef Studies, James Cook University, Queensland 4811, Australia

5. Department of Parks and Wildlife, Kensington, Perth, Western Australia, Australia

6. Oceans Institute, University of Western Australia, Crawley, Western Australia, Australia

7. Centre for Environment, Fisheries and Aquaculture Science, Pakefield Road, Lowestoft NR33 0HT, UK

8. School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

Abstract

Climate change is one of the greatest threats to the long-term maintenance of coral-dominated tropical ecosystems, and has received considerable attention over the past two decades. Coral bleaching and associated mortality events, which are predicted to become more frequent and intense, can alter the balance of different elements that are responsible for coral reef growth and maintenance. The geomorphic impacts of coral mass mortality have received relatively little attention, particularly questions concerning temporal recovery of reef carbonate production and the factors that promote resilience of reef growth potential. Here, we track the biological carbonate budgets of inner Seychelles reefs from 1994 to 2014, spanning the 1998 global bleaching event when these reefs lost more than 90% of coral cover. All 21 reefs had positive budgets in 1994, but in 2005 budgets were predominantly negative. By 2014, carbonate budgets on seven reefs were comparable with 1994, but on all reefs where an ecological regime shift to macroalgal dominance occurred, budgets remained negative through 2014. Reefs with higher massive coral cover, lower macroalgae cover and lower excavating parrotfish biomass in 1994 were more likely to have positive budgets post-bleaching. If mortality of corals from the 2016 bleaching event is as severe as that of 1998, our predictions based on past trends would suggest that six of eight reefs with positive budgets in 2014 would still have positive budgets by 2030. Our results highlight that reef accretion and framework maintenance cannot be assumed from the ecological state alone, and that managers should focus on conserving aspects of coral reefs that support resilient carbonate budgets.

Funder

Leverhulme Trust

Natural Environment Research Council

Western Indian Ocean Marine Science Association

Publisher

The Royal Society

Subject

General Agricultural and Biological Sciences,General Environmental Science,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3