Tesco Grocery 1.0, a large-scale dataset of grocery purchases in London

Author:

Aiello Luca MariaORCID,Quercia Daniele,Schifanella RossanoORCID,Del Prete Lucia

Abstract

AbstractWe present the Tesco Grocery 1.0 dataset: a record of 420 M food items purchased by 1.6 M fidelity card owners who shopped at the 411 Tesco stores in Greater London over the course of the entire year of 2015, aggregated at the level of census areas to preserve anonymity. For each area, we report the number of transactions and nutritional properties of the typical food item bought including the average caloric intake and the composition of nutrients. The set of global trade international numbers (barcodes) for each food type is also included. To establish data validity we: i) compare food purchase volumes to population from census to assess representativeness, and ii) match nutrient and energy intake to official statistics of food-related illnesses to appraise the extent to which the dataset is ecologically valid. Given its unprecedented scale and geographic granularity, the data can be used to link food purchases to a number of geographically-salient indicators, which enables studies on health outcomes, cultural aspects, and economic factors.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Reference52 articles.

1. Deloitte. Global powers of retailing 2017 - the art and science of customers. https://www2.deloitte.com/content/dam/Deloitte/global/Documents/consumer-industrial-products/gx-cip-2017-global-powers-of-retailing.pdf (2017).

2. Kantar. Worldpanel grocery share data. https://uk.kantar.com/consumer/shoppers/2015/march-kantar-worldpanel-uk-grocery-share/ (2015).

3. Ahn, Y.-Y., Ahnert, S. E., Bagrow, J. P. & Barabási, A.-L. Flavor network and the principles of food pairing. Scientific reports 1 (2011).

4. Zagheni, E., Garimella, V. R. K., Weber, I. & State, B. Inferring international and internal migration patterns from twitter data. In Proceedings of the 23rd International Conference on World Wide Web, WWW ’14 Companion, 439–444 (2014).

5. Kershen, A. J. Food in the migrant experience (Routledge, 2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3