Making marine image data FAIR

Author:

Schoening TimmORCID,Durden Jennifer M.,Faber ClaasORCID,Felden Janine,Heger Karl,Hoving Henk-Jan T.,Kiko Rainer,Köser Kevin,Krämmer Christopher,Kwasnitschka Tom,Möller Klas OveORCID,Nakath DavidORCID,Naß Andrea,Nattkemper Tim W.ORCID,Purser Autun,Zurowietz MartinORCID

Abstract

AbstractUnderwater images are used to explore and monitor ocean habitats, generating huge datasets with unusual data characteristics that preclude traditional data management strategies. Due to the lack of universally adopted data standards, image data collected from the marine environment are increasing in heterogeneity, preventing objective comparison. The extraction of actionable information thus remains challenging, particularly for researchers not directly involved with the image data collection. Standardized formats and procedures are needed to enable sustainable image analysis and processing tools, as are solutions for image publication in long-term repositories to ascertain reuse of data. The FAIR principles (Findable, Accessible, Interoperable, Reusable) provide a framework for such data management goals. We propose the use of image FAIR Digital Objects (iFDOs) and present an infrastructure environment to create and exploit such FAIR digital objects. We show how these iFDOs can be created, validated, managed and stored, and which data associated with imagery should be curated. The goal is to reduce image management overheads while simultaneously creating visibility for image acquisition and publication efforts.

Funder

EC | Horizon 2020 Framework Programme

RCUK | Engineering and Physical Sciences Research Council

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Helmholtz Association

Deutsche Forschungsgemeinschaft

Agence Nationale de la Recherche

Bundesministerium für Bildung und Forschung

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3