Survey of automatic plankton image recognition: challenges, existing solutions and future perspectives

Author:

Eerola Tuomas,Batrakhanov Daniel,Barazandeh Nastaran Vatankhah,Kraft Kaisa,Haraguchi Lumi,Lensu Lasse,Suikkanen Sanna,Seppälä Jukka,Tamminen Timo,Kälviäinen Heikki

Abstract

AbstractPlanktonic organisms including phyto-, zoo-, and mixoplankton are key components of aquatic ecosystems and respond quickly to changes in the environment, therefore their monitoring is vital to follow and understand these changes. Advances in imaging technology have enabled novel possibilities to study plankton populations, but the manual classification of images is time consuming and expert-based, making such an approach unsuitable for large-scale application and urging for automatic solutions for the analysis, especially recognizing the plankton species from images. Despite the extensive research done on automatic plankton recognition, the latest cutting-edge methods have not been widely adopted for operational use. In this paper, a comprehensive survey on existing solutions for automatic plankton recognition is presented. First, we identify the most notable challenges that make the development of plankton recognition systems difficult and restrict the deployment of these systems for operational use. Then, we provide a detailed description of solutions found in plankton recognition literature. Finally, we propose a workflow to identify the specific challenges in new datasets and the recommended approaches to address them. Many important challenges remain unsolved including the following: (1) the domain shift between the datasets hindering the development of an imaging instrument independent plankton recognition system, (2) the difficulty to identify and process the images of previously unseen classes and non-plankton particles, and (3) the uncertainty in expert annotations that affects the training of the machine learning models. To build harmonized instrument and location agnostic methods for operational purposes these challenges should be addressed in future research.

Funder

Academy of Finland

HORIZON EUROPE Food, Bioeconomy, Natural Resources, Agriculture and Environment

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3