Abstract
AbstractGold nanoparticles are highly desired for a range of technological applications due to their tunable properties, which are dictated by the size and shape of the constituent particles. Many heuristic methods for controlling the morphological characteristics of gold nanoparticles are well known. However, the underlying mechanisms controlling their size and shape remain poorly understood, partly due to the immense range of possible combinations of synthesis parameters. Data-driven methods can offer insight to help guide understanding of these underlying mechanisms, so long as sufficient synthesis data are available. To facilitate data mining in this direction, we have constructed and made publicly available a dataset of codified gold nanoparticle synthesis protocols and outcomes extracted directly from the nanoparticle materials science literature using natural language processing and text-mining techniques. This dataset contains 5,154 data records, each representing a single gold nanoparticle synthesis article, filtered from a database of 4,973,165 publications. Each record contains codified synthesis protocols and extracted morphological information from a total of 7,608 experimental and 12,519 characterization paragraphs.
Funder
DOE | SC | Basic Energy Sciences
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献