Abstract
AbstractAxolotl (Ambystoma mexicanum) is an excellent model for investigating regeneration, the interaction between regenerative and developmental processes, comparative genomics, and evolution. The brain, which serves as the material basis of consciousness, learning, memory, and behavior, is the most complex and advanced organ in axolotl. The modulation of transcription factors is a crucial aspect in determining the function of diverse regions within the brain. There is, however, no comprehensive understanding of the gene regulatory network of axolotl brain regions. Here, we utilized single-cell ATAC sequencing to generate the chromatin accessibility landscapes of 81,199 cells from the olfactory bulb, telencephalon, diencephalon and mesencephalon, hypothalamus and pituitary, and the rhombencephalon. Based on these data, we identified key transcription factors specific to distinct cell types and compared cell type functions across brain regions. Our results provide a foundation for comprehensive analysis of gene regulatory programs, which are valuable for future studies of axolotl brain development, regeneration, and evolution, as well as on the mechanisms underlying cell-type diversity in vertebrate brains.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Why Do We Study Aquatic Organisms?;International Journal of Molecular Sciences;2023-10-31