City-scale Vehicle Trajectory Data from Traffic Camera Videos

Author:

Yu Fudan,Yan HuanORCID,Chen Rui,Zhang Guozhen,Liu YuORCID,Chen Meng,Li YongORCID

Abstract

AbstractVehicle trajectory data underpins various applications in intelligent transportation systems, such as traffic surveillance, traffic prediction, and traffic control. Traditional vehicle trajectory datasets, recorded by GPS devices or single cameras, are often biased towards specific vehicles (e.g., taxis) or incomplete (typically < 1 km), limiting their reliability for downstream applications. With the widespread deployment of traffic cameras across the city road network, we have the opportunity to capture all vehicles passing by. By collecting city-scale traffic camera video data, we apply a trajectory recovery framework that identifies vehicles across all cameras and reconstructs their paths in between. Leveraging this approach, we are the first to release a comprehensive vehicle trajectory dataset that covers almost full-amount of city vehicle trajectories, with approximately 5 million trajectories recovered from over 3000 traffic cameras in two metropolises. To assess the quality and quantity of this dataset, we evaluate the recovery methods, visualize specific cases, and compare the results with external road speed and flow statistics. The results demonstrate the consistency and reliability of the released trajectories. This dataset holds great promise for research in areas such as unveiling traffic dynamics, traffic network resilience assessment, and traffic network planning.

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3