Abstract
AbstractDespite the use of Hymenolepis diminuta as a model organism in experimental parasitology, a full genome description has not yet been published. Here we present a hybrid de novo genome assembly based on complementary sequencing technologies and methods. The combination of Illumina paired-end, Illumina mate-pair and Oxford Nanopore Technology reads greatly improved the assembly of the H. diminuta genome. Our results indicate that the hybrid sequencing approach is the method of choice for obtaining high-quality data. The final genome assembly is 177 Mbp with contig N50 size of 75 kbp and a scaffold N50 size of 2.3 Mbp. We obtained one of the most complete cestode genome assemblies and annotated 15,169 potential protein-coding genes. The obtained data may help explain cestode gene function and better clarify the evolution of its gene families, and thus the adaptive features evolved during millennia of co-evolution with their hosts.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Reference59 articles.
1. Sun, T. Parasitic disorders: Pathology, diagnosis, and management. (Williams & Wilkins, 1999).
2. Garcia, L. S. Diagnostic medical parasitology. (American Society for Microbiology Press, 2006).
3. Kapczuk, P. et al. Selected molecular mechanisms involved in the parasite–host system Hymenolepis diminuta–rattus norvegicus. Int. J. Mol. Sci. 19, 2435 (2018).
4. Skrzycki, M. et al. Hymenolepis diminuta: experimental studies on the antioxidant system with short and long term infection periods in the rats. Exp. Parasitol. 129, 158–163 (2011).
5. Stradowski, M. Effects of inbreeding in Hymenolepis diminuta [Cestoda]. Acta Parasitol. 3, 146–149 (1994).
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献