Abstract
AbstractModel parasite species, whose entire life cycle can be completed in the laboratory and maintained for multiple generations, have played a fundamental role in our understanding of host–parasite interactions. Yet, keeping parasites in laboratory conditions may expose them to unnatural evolutionary pressures, and using laboratory cultures for research is therefore not without limitations. Using 2 widely-used model helminth species, the cestode Hymenolepis diminuta and the nematode Heligmosomoides polygyrus, I illustrate the caution needed when interpreting experimental results on model species. I first review more than 1200 experimental studies published on these species in the past 4 decades, to determine which research areas they have contributed to. This is followed by an examination of the institutional laboratory cultures that have provided the parasites used in these studies. Some of these have persisted for decades and accounted for a substantial proportion of published studies, whereas others have been short-lived. Using information provided by the curators of active cultures, I summarize data on their origins and maintenance conditions. Finally, I discuss how laboratory cultures may have been subject to the influence of evolutionary genetic processes, such as founder effects, genetic drift and inbreeding. I also address the possibility that serial passage through laboratory hosts across multiple generations has exerted artificial selection on several parasite traits, resulting in genetic and phenotypic divergence among laboratory cultures, and between these cultures and natural parasite populations. I conclude with recommendations for the continued usage of laboratory helminth cultures aimed at maximizing their important contribution to parasitological research.
Publisher
Cambridge University Press (CUP)
Subject
Infectious Diseases,Animal Science and Zoology,Parasitology