Abstract
AbstractSoil moisture plays a key role in controlling land-atmosphere interactions, with implications for water resources, agriculture, climate, and ecosystem dynamics. Although soil moisture varies strongly across the landscape, current monitoring capabilities are limited to coarse-scale satellite retrievals and a few regional in-situ networks. Here, we introduce SMAP-HydroBlocks (SMAP-HB), a high-resolution satellite-based surface soil moisture dataset at an unprecedented 30-m resolution (2015–2019) across the conterminous United States. SMAP-HB was produced by using a scalable cluster-based merging scheme that combines high-resolution land surface modeling, radiative transfer modeling, machine learning, SMAP satellite microwave data, and in-situ observations. We evaluated the resulting dataset over 1,192 observational sites. SMAP-HB performed substantially better than the current state-of-the-art SMAP products, showing a median temporal correlation of 0.73 ± 0.13 and a median Kling-Gupta Efficiency of 0.52 ± 0.20. The largest benefit of SMAP-HB is, however, the high spatial detail and improved representation of the soil moisture spatial variability and spatial accuracy with respect to SMAP products. The SMAP-HB dataset is available via zenodo and at https://waterai.earth/smaphb.
Funder
United States Department of Commerce | National Oceanic and Atmospheric Administration
National Aeronautics and Space Administration
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献