Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields
-
Published:2021-04-09
Issue:4
Volume:25
Page:1827-1847
-
ISSN:1607-7938
-
Container-title:Hydrology and Earth System Sciences
-
language:en
-
Short-container-title:Hydrol. Earth Syst. Sci.
Author:
Vergopolan NoemiORCID, Xiong Sitian, Estes Lyndon, Wanders NikoORCID, Chaney Nathaniel W., Wood Eric F.ORCID, Konar Megan, Caylor Kelly, Beck Hylke E.ORCID, Gatti NicolasORCID, Evans TomORCID, Sheffield JustinORCID
Abstract
Abstract. Soil moisture is highly variable in space and time, and deficits (i.e.,
droughts) play an important role in modulating crop yields. Limited
hydroclimate and yield data, however, hamper drought impact monitoring and
assessment at the farm field scale. This study demonstrates the potential of using field-scale soil moisture simulations to support high-resolution agricultural yield prediction and drought monitoring at the smallholder farm field scale. We present a multiscale modeling approach that combines HydroBlocks – a physically based hyper-resolution land surface model (LSM) – with machine learning. We used HydroBlocks to simulate root zone soil moisture and soil temperature in Zambia at 3 h 30 m resolution. These simulations, along with remotely sensed vegetation indices, meteorological data, and descriptors of the physical landscape (related to topography, land cover, and soils) were combined with district-level maize data to train a random forest (RF) model to predict maize yields at district and field scales (250 m). Our model predicted yields with an average testing coefficient of determination (R2) of 0.57 and mean absolute error (MAE) of 310 kg ha−1 using year-based cross-validation. Our predicted maize losses due to the 2015–2016 El Niño drought agreed well with losses reported by the Food and Agriculture Organization (FAO). Our results reveal that soil moisture is the strongest and most reliable predictor of maize yield, driving its spatial and temporal variability. Soil moisture was also a more effective indicator of drought impacts on crops than precipitation, soil and air temperatures, and remotely sensed normalized difference vegetation index (NDVI)-based drought indices. This study
demonstrates how field-scale modeling can help bridge the spatial-scale gap
between drought monitoring and agricultural impacts.
Funder
National Science Foundation National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences,General Engineering,General Environmental Science
Reference100 articles.
1. Adegoke, J. O. and Carleton, A. M.: Relations between Soil Moisture and
Satellite Vegetation Indices in the U.S. Corn Belt, J. Hydrometeorol., 3, 395–405, https://doi.org/10.1175/1525-7541(2002)003<0395:rbsmas>2.0.co;2, 2002. a 2. Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H. S., and Radiom, S.: Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI, IEEE J. Sel. Top. Appl., 11, 4563–4577, https://doi.org/10.1109/jstars.2018.2823361, 2018. a 3. Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., and Sitko, N.: Climate-change vulnerability in rural Zambia: the impact of an El Niño-induced shock on income and productivity, available at: http://www.fao.org/3/ca3255en/CA3255EN.pdf (last access: 18 May 2020), 2019. a, b, c, d 4. Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data An., 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, 2008. a, b 5. Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a, b
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|