Author:
Zhang Yue,Guo Wenchao,Yuan Zhili,Song Zhen,Wang Zhonghui,Gao Jinhui,Fu Weidong,Zhang Guoliang
Abstract
AbstractThe prickly nightshade Solanum rostratum, an annual malignant weed, is native to North America and has globally invaded 34 countries, causing serious threats to ecosystems, agriculture, animal husbandry, and human health. In this study, we constructed a chromosome-level genome assembly and annotation of S. rostratum. The contig-level genome was initially assembled in 898.42 Mb with a contig N50 of 62.00 Mb from PacBio high-fidelity reads. With Hi-C sequencing data scaffolding, 96.80% of the initially assembled sequences were anchored and orientated onto 12 pseudo-chromosomes, generating a genome of 869.69 Mb with a contig N50 of 72.15 Mb. We identified 649.92 Mb (72.26%) of repetitive sequences and 3,588 non-coding RNAs in the genome. A total of 29,694 protein-coding genes were predicted, with 28,154 (94.81%) functionally annotated genes. We found 99.5% and 91.3% complete embryophyta_odb10 genes in the pseudo-chromosomes genome and predicted gene datasets by BUSCO assessment. The present genomic resource provides essential information for subsequent research on the mechanisms of environmental adaptation of S. rostratum and host shift in Colorado potato beetles.
Publisher
Springer Science and Business Media LLC
Subject
Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献