Genomic Insights into Seed Germination Differences in Buffalobur (Solanum rostratum Dunal) under Contrasting GA and ABA Availability

Author:

Chen Zhaoxia1,Li Longlong1,Wu Kaidie1,Zhao Dandan1,Yang Long1,Huang Hongjuan1,Huang Zhaofeng1,Wei Shouhui1ORCID

Affiliation:

1. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China

Abstract

Buffalobur (Solanum rostratum Dunal) is an invasive species that seriously endangers crop production and the ecological environment. Seeds are the primary source of infestation; therefore, understanding the molecular basis of buffalobur seed dormancy, and germination is crucial for precision weed management. In this study, high-throughput RNA-Seq was performed on buffalobur seeds, which imbibed under 0.35 mmol/L giberellic acid (GA) and 0.35 mmol/L abscisic acid (ABA). In total, 3658 differentially expressed genes (DEGs) were identified during seed germination. Gene annotation revealed that the DEGs were significantly enriched during the protein metabolic process, as well as the macromolecular complex and cytoplasmic part for ABA versus GA. Pathway analysis predicted that the DEGs were associated with metabolic pathways, the biosynthesis of secondary metabolites and ribosome. Nine germination-related genes involved in the biosynthesis and metabolism of the phytohormones and encoding of the endo-β-mannanase (EBM) were identified. Gene expression indicated that GA upregulated GA3OX1 and MAN2 expression to increase the EBM activity, which caused the endosperm cap to weaken and lowered the puncture force to trigger the germination of buffalobur. The obtained results would be helpful to clarify the regulation of seed dormancy and the germination of buffalobur, and could serve as a valuable resource when unravelling the genetic basis of seed biology of this weed species.

Funder

Beijing Natural Science Foundation

Natural Science Foundation of China

The Sci-Tech Innovation 2030 Agenda

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3