MetaFlux: Meta-learning global carbon fluxes from sparse spatiotemporal observations

Author:

Nathaniel Juan,Liu Jiangong,Gentine PierreORCID

Abstract

AbstractWe provide a global, long-term carbon flux dataset of gross primary production and ecosystem respiration generated using meta-learning, calledMetaFlux. The idea behind meta-learning stems from the need to learn efficiently given sparse data by learning how to learn broad features across tasks to better infer other poorly sampled ones. Using meta-trained ensemble of deep models, we generate global carbon products on daily and monthly timescales at a 0.25-degree spatial resolution from 2001 to 2021, through a combination of reanalysis and remote-sensing products. Site-level validation finds that MetaFlux ensembles have lower validation error by 5–7% compared to their non-meta-trained counterparts. In addition, they are more robust to extreme observations, with 4–24% lower errors. We also checked for seasonality, interannual variability, and correlation to solar-induced fluorescence of the upscaled product and found that MetaFlux outperformed other machine-learning based carbon product, especially in the tropics and semi-arids by 10–40%. Overall, MetaFlux can be used to study a wide range of biogeochemical processes.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Statistics, Probability and Uncertainty,Computer Science Applications,Education,Information Systems,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3