Exploring the Potential of Long Short‐Term Memory Networks for Predicting Net CO2 Exchange Across Various Ecosystems With Multi‐Source Data

Author:

Huang Chengcheng1ORCID,He Wei23ORCID,Liu Jinxiu1ORCID,Nguyen Ngoc Tu4ORCID,Yang Hua5ORCID,Lv Yiming1ORCID,Chen Hui1ORCID,Zhao Mengyao6ORCID

Affiliation:

1. School of Information Engineering China University of Geosciences Beijing China

2. International Institute for Earth System Science Nanjing University Nanjing China

3. Zhejiang Carbon Neutral Innovation Institute Zhejiang University of Technology Hangzhou China

4. State Key Laboratory of Hydrology‐Water Resources and Hydraulic Engineering College of Hydrology and Water Resources Hohai University Nanjing China

5. State Key Laboratory of Remote Sensing Science Jointly Sponsored By Beijing Normal University and Aerospace Information Research Institute Chinese Academy of Sciences Beijing China

6. School of Geography and Tourism Anhui Normal University Wuhu China

Abstract

AbstractUpscaling flux tower measurements based on machine learning (ML) algorithms is an essential approach for large‐scale net ecosystem CO2 exchange (NEE) estimation, but existing ML upscaling methods face some challenges, particularly in capturing NEE interannual variations (IAVs) that may relate to lagged effects. With the capacity to characterize temporal memory effects, the Long Short‐Term Memory (LSTM) networks are expected to help solve this problem. Here we explored the potential of LSTM for predicting NEE across various ecosystems using flux tower data over 82 sites in North America. The LSTM model with differentiated plant function types (PFTs) demonstrates the capability to explain 79.19% (R2 = 0.79) of the monthly variations in NEE within the testing set, with RMSE and Mean Absolute Error values of 0.89 and 0.57 g C m−2 d−1 respectively (r = 0.89, p < 0.001). Moreover, the LSTM model performed robustly in predicting cross‐site variability, with 67.19% of the sites that can be predicted by both LSTM models with and without distinguished PFTs showing improved predictive ability. Most importantly, the IAV of predicted NEE highly correlated with that in flux observations (r = 0.81, p < 0.001), clearly outperforming that by the random forest model (r = −0.21, p = 0.011). Among all nine PFTs, solar‐induced chlorophyll fluorescence, downward shortwave radiation, and leaf area index are the most important variables for explaining NEE variations, collectively accounting for approximately 54.01% in total. This study highlights the great potential of LSTM for improving carbon flux upscaling with multi‐source remote sensing data.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3