Author:
Li Xuewei,Chen Pengxiang,Xie Yinpeng,Yan Yan,Wang Liping,Dang Huan,Zhang Jing,Xu Lingfei,Ma Fengwang,Guan Qingmei
Abstract
AbstractThe function of serrate (SE) in miRNA biogenesis in Arabidopsis is well elucidated, whereas its role in plant drought resistance is largely unknown. In this study, we report that MdSE acts as a negative regulator of apple (Malus × domestica) drought resistance by regulating the expression levels of MdMYB88 and MdMYB124 and miRNAs, including mdm-miR156, mdm-miR166, mdm-miR172, mdm-miR319, and mdm-miR399. MdSE interacts with MdMYB88 and MdMYB124, two positive regulators of apple drought resistance. MdSE decreases the transcript and protein levels of MdMYB88 and MdMYB124, which directly regulate the expression of MdNCED3, a key enzyme in abscisic acid (ABA) biosynthesis. Furthermore, MdSE is enriched in the same region of the MdNECD3 promoter where MdMYB88/MdMYB124 binds. Consistently, MdSE RNAi transgenic plants are more sensitive to ABA-induced stomatal closure, whereas MdSE OE plants are less sensitive. In addition, under drought stress, MdSE is responsible for the biogenesis of mdm-miR399, a negative regulator of drought resistance, and negatively regulates miRNAs, including mdm-miR156, mdm-miR166, mdm-miR172, and mdm-miR319, which are positive regulators of drought resistance. Taken together, by revealing the negative role of MdSE, our results broaden our understanding of the apple drought response and provide a candidate gene for apple drought improvement through molecular breeding.
Funder
National Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Horticulture,Plant Science,Genetics,Biochemistry,Biotechnology
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献