GhAGL16 (AGAMOUS-LIKE16) Negatively Regulates Tolerance to Water Deficit in Transgenic Arabidopsis and Cotton

Author:

Lei Jianfeng1,You Yangzi2,Dai Peihong2,Yu Li2,Li Yue2,Liu Chao2,Liu Xiaodong2

Affiliation:

1. College of Agronomy, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China

2. College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi 830052, China

Abstract

Cotton is one of the most economically important crops in the world, and drought is a key abiotic factor that can significantly reduce cotton yield. MADS-box transcription factors play essential roles in various aspects of plant growth and development as well as responses to biotic and abiotic stress. However, the use of MADS-box transcription factors to regulate water stress responses has not been fully explored in cotton. Here, we showed that GhAGL16 acts as a negative regulator of water deficit in cotton, at least in part by regulating ABA signaling. GhAGL16-overexpressing (GhAGL16-OE) transgenic Arabidopsis had lower survival rates and relative water contents (RWCs) under water stress. Isolated leaves of GhAGL16-OE Arabidopsis had increased water loss rates, likely attributable to their increased stomatal density. GhAGL16-OE Arabidopsis also showed reduced primary root lengths in response to mannitol treatment and decreased sensitivity of seed germination to ABA treatment. By contrast, silencing GhAGL16 in cotton enhanced tolerance to water deficit by increasing proline (Pro) content, increasing superoxide dismutase (SOD) and peroxidase (POD) activities, and reducing malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents under water stress. Subcellular localization and transcriptional activation assays confirmed that GhAGL16 is a nuclear protein that lacks transcriptional self-activation activity. The expression of ABA biosynthesis-related genes (GhNCED3/7/14), a catabolism-related gene (GhCYP707A), and a gene related to the ABA signaling pathway (GhABF4) was altered in GhAGL16-silenced plants. Taken together, our data demonstrate that GhAGL16 plays an important role in cotton resistance to water stress.

Funder

National Natural Science Foundation of China

Basic Research Funds for Universities of Xinjiang Uygur Autonomous Region

Key Discipline Development Fund of Crop Science of Xinjiang Agricultural University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3