Dysfunction of dimorphic sperm impairs male fertility in the silkworm

Author:

Chen Shuqing,Liu Yujia,Yang Xu,Liu Zulian,Luo Xingyu,Xu Jun,Huang Yongping

Abstract

AbstractSperm, which have a vital role in sexual reproduction in the animal kingdom, can display heteromorphism in some species. The regulation of sperm dichotomy remains a longstanding puzzle even though the phenomenon has been widely documented for over a century. Here we use Bombyx mori as a model to study a form of sperm dimorphism (eupyrene and apyrene sperm), which is nearly universal among Lepidoptera. We demonstrate that B. mori Sex-lethal (BmSxl) is crucial for apyrene sperm development, and that B. mori poly(A)-specific ribonuclease-like domain-containing 1 (BmPnldc1) is required for eupyrene sperm development. BmSXL is distributed in the nuclei and cytoplasm of somatic cyst cells in a mesh-like pattern and in the cytoplasm of germ cells enclosed in spermatocysts and sperm bundles. Cytological analyses of dimorphic sperm in BmSxl mutants (∆BmSxl) showed deficient apyrene sperm with abnormal nuclei, as well as loss of motility associated with malformed mitochondrial derivatives. We define the crucial function of apyrene sperm in the process of fertilization as assisting the migration of eupyrene spermatozoa from bursa copulatrix to spermatheca. By contrast, BmPnldc1 deficiency (∆BmPnldc1) caused eupyrene sperm abnormalities and impaired the release of eupyrene sperm bundles during spermiation. Although apyrene or eupyrene sperm defects impaired fertility of the mutated males, double copulation of a wild-type female with ∆BmSxl and ∆BmPnldc1 males could rescue the sterility phenotypes induced by single copulation with either gene-deficient male. Our findings demonstrate the crucial functions of BmSxl and BmPnldc1 in the development of sperm dimorphism and the indispensable roles of nonfertile apyrene sperm in fertilization.

Funder

National Natural Science Foundation of China

Strategic Priority Research Program of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Genetics,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3