The mechanoreceptor Piezo is required for spermatogenesis in Bombyx mori

Author:

Zhang ZhongjieORCID,Liu Xiaojing,Hu Bo,Chen Kai,Yu Ye,Sun Chenxin,Zhu Dalin,Bai Hua,Palli Subba Reddy,Tan Anjiang

Abstract

Abstract Background The animal sperm shows high diversity in morphology, components, and motility. In the lepidopteran model insect, the silkworm Bombyx mori, two types of sperm, including nucleate fertile eupyrene sperm and anucleate unfertile apyrene sperm, are generated. Apyrene sperm assists fertilization by facilitating the migration of eupyrene spermatozoa from the bursa copulatrix to the spermatheca. During spermatogenesis, eupyrene sperm bundles extrude the cytoplasm by peristaltic squeezing, while the nuclei of the apyrene sperm bundles are discarded with the same process, forming matured sperm. Results In this study, we describe that a mechanoreceptor BmPiezo, the sole Piezo ortholog in B. mori, plays key roles in larval feeding behavior and, more importantly, is essential for eupyrene spermatogenesis and male fertility. CRISPR/Cas9-mediated loss of BmPiezo function decreases larval appetite and subsequent body size and weight. Immunofluorescence analyses reveal that BmPiezo is intensely localized in the inflatable point of eupyrene sperm bundle induced by peristaltic squeezing. BmPiezo is also enriched in the middle region of apyrene sperm bundle before peristaltic squeezing. Cytological analyses of dimorphic sperm reveal developmental arrest of eupyrene sperm bundles in BmPiezo mutants, while the apyrene spermatogenesis is not affected. RNA-seq analysis and q-RT-PCR analyses demonstrate that eupyrene spermatogenic arrest is associated with the dysregulation of the actin cytoskeleton. Moreover, we show that the deformed eupyrene sperm bundles fail to migrate from the testes, resulting in male infertility due to the absence of eupyrene sperm in the bursa copulatrix and spermatheca. Conclusions In conclusion, our studies thus uncover a new role for Piezo in regulating spermatogenesis and male fertility in insects.

Funder

National Science Foundation of China

Natural Science Foundation of Jiangsu Province

Jiangsu Provincial Association for Science and Technology Young Scientific and Technological Talents Trusteeship Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3