Agricultural drought over water-scarce Central Asia aggravated by internal climate variability

Author:

Jiang JieORCID,Zhou TianjunORCID

Abstract

AbstractA severe agricultural drought swept Central Asia in 2021, causing mass die-offs of crops and livestock. The anthropogenic contribution to declines in soil moisture in this region over recent decades has remained unclear. Here we show from analysis of large ensemble simulations that the aggravation of agricultural droughts over southern Central Asia since 1992 can be attributed to both anthropogenic forcing and internal variability associated with the Interdecadal Pacific Oscillation (IPO). Although the negative-to-positive phase transition of IPO before 1992 offset human-induced soil moisture decline, we find that the positive-to-negative phase transition thereafter has doubled the externally forced rate of drying in the early growing season. Human-induced soil moisture loss will probably be further aggravated in the following century due to warming, albeit with increasing precipitation, and our simulations project that this trend will not be counterbalanced by the IPO phase change. Instead, this internal variability could modulate drying rates in the near term with an amplitude of −2 (+2) standard deviation of the IPO trend projected to amplify (weaken) the externally forced decrease in surface soil moisture by nearly 75% (60%). The findings highlight the need for the interplay between anthropogenic forcing and the natural variability of the IPO to be considered by policymakers in this climate-sensitive region.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3