Local cooling and drying induced by Himalayan glaciers under global warming

Author:

Salerno FrancoORCID,Guyennon NicolasORCID,Yang KunORCID,Shaw Thomas E.ORCID,Lin ChangguiORCID,Colombo NicolaORCID,Romano EmanueleORCID,Gruber StephanORCID,Bolch TobiasORCID,Alessandri Andrea,Cristofanelli PaoloORCID,Putero DavideORCID,Diolaiuti GuglielminaORCID,Tartari GianniORCID,Verza Gianpietro,Thakuri SudeepORCID,Balsamo Gianpaolo,Miles Evan S.ORCID,Pellicciotti FrancescaORCID

Abstract

AbstractUnderstanding the response of Himalayan glaciers to global warming is vital because of their role as a water source for the Asian subcontinent. However, great uncertainties still exist on the climate drivers of past and present glacier changes across scales. Here, we analyse continuous hourly climate station data from a glacierized elevation (Pyramid station, Mount Everest) since 1994 together with other ground observations and climate reanalysis. We show that a decrease in maximum air temperature and precipitation occurred during the last three decades at Pyramid in response to global warming. Reanalysis data suggest a broader occurrence of this effect in the glacierized areas of the Himalaya. We hypothesize that the counterintuitive cooling is caused by enhanced sensible heat exchange and the associated increase in glacier katabatic wind, which draws cool air downward from higher elevations. The stronger katabatic winds have also lowered the elevation of local wind convergence, thereby diminishing precipitation in glacial areas and negatively affecting glacier mass balance. This local cooling may have partially preserved glaciers from melting and could help protect the periglacial environment.

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3