Local Controls on Near‐Surface Glacier Cooling Under Warm Atmospheric Conditions

Author:

Shaw Thomas E.12ORCID,Buri Pascal1ORCID,McCarthy Michael1ORCID,Miles Evan S.1ORCID,Pellicciotti Francesca12ORCID

Affiliation:

1. Swiss Federal Institute WSL Birmensdorf Switzerland

2. Institute of Science and Technology Austria ISTA Klosterneuburg Austria

Abstract

AbstractThe near‐surface boundary layer can mediate the response of mountain glaciers to external climate, cooling the overlying air and promoting a density‐driven glacier wind. The fundamental processes are conceptually well understood, though the magnitudes of cooling and presence of glacier winds are poorly quantified in space and time, increasing the forcing uncertainty for melt models. We utilize a new data set of on‐glacier meteorological measurements on three neighboring glaciers in the Swiss Alps to explore their distinct response to regional climate under the extreme 2022 summer. We find that synoptic wind origins and local terrain modifications, not only glacier size, play an important role in the ability of a glacier to cool the near‐surface air. Warm air intrusions from valley or synoptically‐driven winds onto the glacier can occur between ∼19% and 64% of the time and contribute between 3% and 81% of the total sensible heat flux to the surface during warm afternoon hours, depending on the fetch of the glacier flowline and its susceptibility to boundary layer erosion. In the context of extreme summer warmth, indicative of future conditions, the boundary layer cooling (up to 6.5°C cooler than its surroundings) and resultant katabatic wind flow are highly heterogeneous between the study glaciers, highlighting the complex and likely non‐linear response of glaciers to an uncertain future.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3